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Abstract 

The process of condensation in the system of scalar Bosons with weak Q4 

interaction is considered. Boltzmann kinetic equation is solved numerically. 

Bose condensation proceeds in two stages: At the first stage condensate is 

still absent but there is non-zero inflow of particles towards p’ = 0 and the 

distribution function at 3 = 0 grows from finite values to infinity. At the 

second stage there are two components, condensate and particles, reaching 

their equilibrium values. We show that the evolution in both stages proceeds 

in a self - similar way and find the time needed for condensation, which is 

finite. 
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It is a fundamental result of quantum statistics of Bosons that above a certain critical 

density all added particles must enter the ground state: Bose-Einstein condensate forms. 

The kinetics of this process is a very interesting problem. One can reach the Bose condensa- 

tion gradually decreasing temperature in a sequence of equilibrium states. An appropriate 

description of this is given by the well-known kinetics of second order phase transitions. 

On the other hand, when the conditions for the formation of Bose condensate appear, the 

system can be far from the equilibrium. Recently this problem attracted particular interest 

in connection with exciting prospects for the experimental observation of Bose condensation 

in a very cold atomic samples, e.g. in a gas of spin-polarized atomic hydrogen [l] or in 

alkali-metal vapors [2]. Another interesting application of Bose kinetics is rather far from 

the laboratory experiments and is related to the problem of Bose stars formation [3,4] from 

the dark matter in the universe. 

The question of the time evolution of weakly interacting Bose gas was addressed in a 

number of papers. In earlier treatments an ideal Bose gas was coupled to a thermal bath 

with infinite heat capacity [5,6]. Small energy exchange was assumed and after several 

other approximations a Fokker-Planck type equation was obtained. Levich and Yahkot 

[6] calculated analytically that the time for condensation is infinite in this situation. By 

including Boson-Boson interactions they later [7] f ound solution which describes explosive 

appearance of a condensate, but they concluded that this effect could have been an artifact 

of their approximations. 

Snoke and Wolfe in Ref. [8] undertook direct numerical integration of Boltzmann ki- 

netic equation. Although this calculation demonstrated the restructuring of the distribution 

function, the appearance of a Bose condensate was not detected. Their approach is close to 

ours but in comparison with the Ref. [S] we perform numerical integration in much wider 

dynamical range of relative energies and densities and we directly analyse the behavior the 

distribution function. 

Another result recently reported in Ref. (91 states that the time required for condensation 

1s N T,, where T’ is the temperature of Bose condensation. This result seems to be incorrect 
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(or at least it can not be applied to all temporal stages of gas evolution) since it is insensitive 

to the interactions. Clearly, in the limit of zero couplings the distribution of particles does 

not evolve and the relaxation time has to be infinite. 

Analytical study of Bose condensation was performed recently in the paper [lo]. Three 

different regimes of evolution where identified. It was argued that in the kinetic region in 

non-linear regime the distribution function has to be a power law f oc ~~~1~. This power low 

is well known in the theory of plasma turbulence [11,12]. We indeed observe the tendency 

to this law in our numerical simulations, but the system never reaches it. Moreover, this 

distribution became destroyed with condensate appearance, contrary to the assumptions of 

Ref. [lo]. What concerns condensation time, only rough dimensional estimations were done 

in Ref. [lo]. 

We found that Bose condensation process can be divided on two stages. During the 

first part of the first stage the self-similar solution forms and then the distribution function 

reaches infinity at p’= 0 in a self-similar way. We can not observe in principle the actual build 

up of the coherence in the frameworks of Boltzmann equation. But we have to conclude 

that after the distribution function became infinite at zero momentum, the condensate 

had formed. While due to fluctuations the width of the coherent region can be finite in 

momentum space, we simply model the coherent field by IV, a(G) with initially infinitesimally 

small but then growing amplitude N,(t). We found that in this second stage the evolution 

also proceeds in a self-similar fashion and found the durations of both stages. 

While our prime interest and motivations for this work was connected to the physics of 

Bose star, the problem of condensate formation with account for the gravitational field was 

never approached and we do not attempt it here. Instead, we are solving kinetic equations 

in flat space-time and only range of parameters of the initial distribution reflect the virial 

equilibrium of self-gravitating system. 

We consider the system of scalar bosons with 4-particle self-interaction. The field- 

theoretical Lagrangian which we bear in mind is L = (?$4)*/2 - m*4*/2 - Q4/4!. Time 

development of the quantum state which contain well defined and large number of particles 
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can be adequately described by the Boltzmann kinetic equation which governs the evolution 

of one-particle distribution function, j(G): 

df(is) 7r4 - = 7 dt J lJl,i12F(f)64(CPpi) fJ $$j 3 
i 

where 

F(j) = [l + fl] [l + f*lf;f; - 11 + ill 11 + mh 7 

(1) 

(2) 

and ji Y j(Fi), j,! E j(p’i ‘). The equilibrium solution of the kinetic equation is the Bose- 

Einstein distribution function 

f(S) = 
1 

ev UC - d/T) - 1 + (w3w(ii) 9 

where E is the particle energy, p is the chemical potential, T is the temperature of the final 

state and NC is the number density of particles in condensate. 

In what follows we shall consider isotropic initial distribution j = j(~). In our case 

the matrix element is given by ]Mfi] = X2 and the kinetic equation for the case without 

condensate, NC = 0, can be rewritten in the form 

Wd x2 
dt =64n3m JJ F( j);dc# E Ip , (4) 

where D z min[pr,pz,p\,p!J and ~2 = E\ + E; - ~1 in arguments of F(f). The integration 

should be done over the region ti < til < 00, ~1 - til. < E’* < 00. 

After the moment of condensate formation the kinetic equation (4) is inappropriate for 

numerical integration anymore, the finite number of particles in condensate corresponds 

to the infinite value of the distribution function at zero energy. In order to describe the 

system of particles interacting with the condensate we divide the distribution function into 

two pieces: f = j(E, t) + (2?r)3Nc(t)h3(@), w h ere the first term corresponds to the “gas” of 

particles and the second one describe the condensate. Substituting this function into the 

original kinetic equation (1) we obtain 
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*“i,(t) = 
X2Nc(t) O” J 647r3m, 0 w4vl.f; - f2,<E + ml > (54 

f(h) = IP + 
N&)X2 

32nm2pl (~“~(r; - f,).fi - f&l% + 2/k - f&f2 + f;f,&) . (5b) El 

In general, after the condensate formation (and at large particle densities even before) 

the description in terms of quasiparticles rather then particles is more appropriate. For 

example, the kinetic equation, Eq.(5), d oes not include the processes where one of the 

incoming and one of the outcoming particles has zero momentum, ph = p2 = 0. This process 

does not contribute to the collision integral directly, i.e. it does not change the distribution 

of particles over energies, but it does change the effective particle mass. 

However, in many cases those effects are insignificant and we still can work in terms of 

particles. The quantitative arguments are the following. The effective mass of quasiparticles 

in the presence of condensate (or in dense medium) is rn,ff- = m2 + X4:/6 = m2 + An/m. 

We can still use the description in terms of particles if the second term in the sum is much 

smaller than the first one. Since n - m3(Av)3fa we obtain xf~(Av)~ << 1, where Au is 

characteristic velocity dispersion. In the case of axion miniclusters, for example, we have [4] 

VO - 10-5; Au - 10-8, and the description in terms of particles is perfectly good. 

As an initial distribution we choose the function f(c) which has the maximum at fi = 

0. In general, such ‘distribution function can be characterized by meanGf Three major 

parameters: (1) The overall amplitude fe. In what follows we define fe = f(& = 0). (2) The 

energy scale EO where the distribution function became twice smaller, J(Q) = j0/2. (3) The 

effective width, l?, of the region over which the distribution function varies rapidly. More 

specifically, we choose the initial distribution function to be of the form: 

f(~) = $ arctan [exp (r(l - E/Eo))] . (6) 

In what follows we shall measure the energy in units of EO and the distribution function in 

units of fa, i.e. initial distribution function will have the normalization f(~ = 0) = 1. 
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We define the dimensionless time T as [3]: 

7 = 4foU + foP2 t - 
64n3m * (7) 

The parameters EO and fa in the limit fo >> 1 after resealing will not enter the kinetic 

equation explicitly, but will define the time scale. In terms of 7 there remains the weak 

dependence of the relaxation time upon the initial shape parameter l?. All data presented 

in this paper will correspond to one and the same value of I’ = 5. With the initial shape 

of the distribution function being given, the two scaling parameters ja and EO define also 

the parameters of final equilibrium {T,p, NC}. With P = 5 the choice f’ 5 fcrir x 2.8 

corresponds to the Bose-gas without condensate, while fo > f,--it corresponds to condensate 

formation in the final equilibrium state. 

We shall consider here the case fo > 2.8 only. We shall simplify the problem and 

consider fo > 1. In this case we can disregard f2 terms in the function (2), which became 

w> = Ml + film; - vi + f4flf2. 

We integrated the kinetic equation in the energy interval 10mg < E < 10. We defined the 

distribution function on the grid of 200 points equally spaced in the logarithm of energy and 

used the spline interpolation when calculating distribution function at intermediate points. 

For each integration in collision integral we had implied Gauss algorithm. Particle and 

energy non-conservation was of order 10s3 for the whole time of integration. 

Results of nnmericalintegrz&ion -of.Lhe tinetic equation (.4) are-presented in Fig. 1, 

where we plot the distribution function at different moments of time. We have arranged 

the output each time when f(& = Emin, t) had increased by one order of magnitude. The 

most striking feature of this plot is self-similar character of the evolution. The distribution 

function has the “core” where f(~) z const and the radius of “core” decreases with time 

while the value of f(c) in the core grows. Outside the core the distribution function is the 

power law f(e) a Ca and does not depend upon time to a very good accuracy. Self-similar 

solutions exhibiting this kind of behavior can be parametrized as 

fk, 4 = A--“(~M++-)) , (8) 
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where it is assumed A(T) --f 0 with the increase of time and we always can choose the 

normalization fs (0) = 1. It is possible to find the time dependence of distribution function 

at E = 0 at late times analytically, using self-similarity of the solution. 

Substituting parametrization (8) in the kinetic equation we obtain: 

f(0, T) = [2C(T, - T)(at - 1)1-“/@[“-1)) , (9) 

and f(O,r) has the pole at the finite moment of time r = r,, f(O,7,) = 00. 

The value of logarithmic derivative off(~) is plotted in Fig. lb. The dotted line in Figs. 

1 corresponds to the limiting value cr = 7/6. This power law corresponds to the stationary 

solution of the kinetic equation (4), see Ref. [12]. But this value is never reached prior to the 

moment of condensate formation (after that moment the character of evolution completely 

changes). Rather, with the boundary condition df/& = 0 at E = 0 the power law on the tail 

is cy x 1.24 (with appropriate boundary conditions our code correctly finds the root cr = 7/6 

). And the function Eq. (9) is a good fit to our data with cr x 1.24 and rC z 19. 

We conclude, that after the solution have reached self-similar form, the time dependence 

of the distribution function at zero momentum is given by f(O,r) a (7, - 7)-2-G, which 

reaches infinity at finite time and means the onset of condensation. 

Though the system does not reach the limiting value of cr = 7/6, at least this power law 

is the root of the equation Ip = 0 [12]. Because of that we selected the function f(c) a &-‘i6 

at E < 1 as an initial condition while integrating Eqs. (5). We took initially NC < N,,, (the 

particular choice for NC, as far as this condition is satisfied, is insignificant). 

Results of numerical integration of the system (5) are presented in Fig. 2. The dashed 

line corresponds to the initial distribution. Solid lines correspond to the distribution function 

at different moments of time. Basically, evolution proceeds in the following way. First, the 

power law f(E) a l/(s) ‘i6 changes to the law f(&) a l/s at small energies. And then this 

change propagates to the region of lager energies, see Fig. 2. Later on the power law stays 

on the equilibrium value a = 1, but the amplitude of f(&) gradually decreases. 

Again, we see that the essential parts of curves in Fig. 2 repeat itself under translation 
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from the left to the right and evolution is self-similar. During this epoch (before “the wave of 

change” had reached exponential tail of the initial distribution at E > 1) approximately 4070 

of particles had condensed. And what is important, the number of particles in condensate 

linearly grows with time at this epoch, NC/N,,, = Br. This enables us to eliminate the 

ambiguity in the initial value for N, since B does not depend upon it. Indeed, in our 

simulations which was done in a finite energy interval, during several first iterations system 

self-adjusts: a proper profile of distribution forms while condensate reaches particular value 

of N,. We can disregard this period and extrapolate curves in Fig. 2, N,(r) and self-similar 

character of the evolution back in time and to the region of smaller energies. 

We obtained B z 2 x fi( 1)2 (initial normalization fi( 1) = 1 corresponds roughly to 

the magnitude of final distribution at E - E,in in Fig. 1). For completeness we also had 

runs when we used final distribution in Fig. 1 as initial condition for integration Eqs. (5). 

Condensation in this case decelerates and N, does not grow lineraly, all is in accordance 

with excess magnitude of the distribution function at small energies when Q x 1.24. 

We have studied numerically the kinetics of Bose condensation of the weakly interacting 

Bose gas. The picture we observe differs even qualitatively from the previous works. The 

distribution function of excess particles which eventually has to form the condensate does 

not narrows in time gradually approaching 6- function, as it was found in Ref. [S] assuming 

small energy exchange per collision. Instead, power low profile f - ~-‘/‘j tend to form which 

corresponds to the constant flux of particles in momentum space towards the condensate [12]. 

One could expect, as it was done in Ref. [lo], that this very natural regime will persist in the 

presence of condensate as well, till all excess particles will inflow from the high energy tail 

and reside in the ground state. Nevertheless, this is not the case also and at the moment the 

condensate appears, it terminates this regime. Instead of this steady flow through the whole 

energy interval, particles from all energy levels jump directly to the condensate retaining 

during the major period of time the equilibrium shape of the distribution function, f - c-l. 

The constant of proportionality in this law gradually decreases till it reaches equilibrium 

value. 
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We can not, in principle, observe the build up of coherence being in frameworks of 

Boltzmann kinetic equation, but kinetic description has to be valid prior to and after the 

very moment of condensate formation. We have seen that evolution on both stages is self- 

similar. This allows-us to obtain a number of useful analytical relations, e.g. the time 

dependence of the distribution function near the point of condensate formation, Eq. 9. We 

have found the duration of both stages, which is finite and of order ~~ N 20. 

We thank E. Kolb, V. Rubakov and G. Starkman for useful discussions. This work was 

supported by DOE and NASA grant NAGW-2381 at Fermilab. D.S. thanks the Astrophysics 

Department of FNAL for the hospitality during this work. 
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FIG. 1. The distribution function (top) and its logarithmic derivative (bottom) are shown at 

different moments of time prior to condensate formation. 
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FIG. 2. The distribution function (top) and its logarithmic derivative (bottom) are shown at 

different moments of time during condensation 
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